

# American Electric Power's Energy Storage Deployments











# The Evolution of the Electric Utility System

**Before** Smart Grid:

One-way power flow, simple interactions, limited sources of renewable generation

After Smart Grid:

Two-way power flow, multi-stakeholder interactions, increased penetration of renewable generation

Adapted from EPRI Presentation by Joe Hughes NIST Standards Workshop April 28, 2008





# Smart Grid Enables Energy Storage

#### But where is the best location/size for the storage ?



Sources: The Economist; ABB





# **Energy Storage Options**







#### **AEP's 1<sup>ST</sup> Substation Battery**

This First Utility-Scale NAS Project in the U.S. was Partially Funded by DOE/Sandia





#### AEP 2006 Project – Peak Shaving

- Scheduled trapezoidal Charge & Discharge profiles
- Summer Month Peak Days

7

 Improved the feeder load factor by 5% (from 75% to 80%)







### AEP Storage 2010 – 11MW, 75MWh

#### 1 MW, 7.2 MWh installed in 2006

Deferred substation upgrades

#### 3 - 2MW,14.4 MWH Commissioned in 2009

- Implemented "Load Following"
- Demonstrated "Islanding (Backup Power)"

#### 4MW, 25MWh substation on-line in 2010



The New "Islanding" feature is Partially Funded by DOE/Sandia





# **Load Following Peak Shaving**





9

#### Churubusco, IN: Battery Islanding Zones.





# System Normal : Grid connected. Battery disconnected.





# Fault at F8; loss of grid power. All reclosers and switches in the island open.









#### Battery picks up island based on last load information.







# Grid power restored.















|                           | Event 1    | Event 2          | Event 3          |
|---------------------------|------------|------------------|------------------|
| Location                  | Milton, WV | Milton, WV       | Milton, WV       |
| Customers on Backup Power | 25         | 700              | 700              |
| Duration on Backup Power  | 48 hours   | 1hr 17 mins      | 10 hours         |
| Cause of Outage           | Ice Storm  | Vehicle Accident | Electrical Fault |
| Date                      | Dec 2009   | Nov 2010         | Mar 2011         |







# **Battery used for Voltage Support**







CES is a fleet of small distributed energy storage units connected to the secondary of transformers serving a few houses controlled together to provide feeder level benefits.

| Key Parameters                     | Value      |                  |
|------------------------------------|------------|------------------|
| Power                              | 25 kW      |                  |
| Energy                             | 75 kWh     | Community 25 KVA |
| Voltage - Secondary                | 240 / 120V |                  |
| Battery                            | Li-Ion     | Energy Energy    |
| Round Trip AC Energy<br>Efficiency | > 85%      | Storage          |

Functional Specifications for CES are "OPEN SOURCE" In 2009 EPRI hosted open webcasts to solicit industry wide input.

www.dolantechcenter.com/Focus/DistributedEnergy/EnergyStorage.aspx



#### **CES – Benefits to the Customer**

CES is Operated as a Fleet offering a Multi-MW, Multi-hour Storage

#### Local Benefits:

- 1) Backup Power
- 2) Renewable Integration
- 3) Voltage correction





### **CES – A Virtual Substation Battery**

CES is Operated as a Fleet offering a Multi-MW, Multi-hour Storage

### Local Benefits:

- 1) Backup Power
- 2) Renewable Integration
- 3) Voltage correction

## Grid Benefits:

- 4) Load Leveling at substation
- **5) Power Factor Correction**
- 6) Ancillary services





# **CES – NE Columbus Project Benefits.**

#### **Community Energy Storage** gridSMART" AEP OHIO' 80 units, 25kW (2 MW/2 MWh) Control hub at Morse Rd Station (northern Columbus) Circuit F5801 13kV, 6.3 MV peak load 1,742 customers System will cover approximately 20% of customers Backup Load Leveling pf correction Morse Rd. Station CES CES CES CES \*\*





#### **First CES Deployment**







#### Load Leveling – Spread Across the CES Fleet



Feeder level demand profile showing CES Unit charge and discharge



# Demand Triggered Load Following

**Ideal and simple** if stored energy is sufficient. However, there is no assurance that stored energy would be adequate and , therefore, peak shaving could be completely ineffective.





# **Time Triggered Discharge Parameters**



# • Set Points:

26

- Start Time (same for all days)
- Minimum Demand below which no energy should be discharged





# • Set Points:

- Start Time
- Ramp Up duration (min)  $T_{up}$
- Flat Duration (hours) t<sub>FLAT</sub>
- Ramp Down Duration (min)  $t_{DN}$

# • Dynamic Inputs:

- Unit Available Energy
- Status (Manual, etc.)
- Unit output (kW, kVAR)
- Voltage





# **Scheduled Discharge Options**







# **Sustainable Future Deployments**

#### TECHNOLOGY





# Conclusion



- Successful deployment of Energy Storage Systems
- AEP's current Energy Storage strategy is focused primarily on Community Energy Storage.
- Energy Storage System Cost must reduce significantly to become economically justifiable for utility deployment.
- Market predictions indicate that near-term costs for energy storage may broaden deployment opportunities.

